This Person Does Not Exist
- Learning Logically Team
- Nov 27, 2020
- 2 min read
Updated: Oct 29, 2021

The Photos Are Created by AI Technology called Generative Adversial Network
Go down for more Research
Generative adversarial networks learn to generate entirely new images that mimic the appearance of real photos,” NVIDIA explained in an online video. The faces generated on the website come in all shapes, colors, genders and ages. And outside of a few glitches, most look shockingly real
Reload this page to see next image
NVIDIA online explanation video down 👇
MASK INPAINTED RESULT
Research here
A generative adversarial network (GAN) is a class of machine learning frameworks designed by Ian Goodfellow and his colleagues in 2014.[1] Two neural networks contest with each other in a game (in the form of a zero-sum game, where one agent's gain is another agent's loss).
Given a training set, this technique learns to generate new data with the same statistics as the training set. For example, a GAN trained on photographs can generate new photographs that look at least superficially authentic to human observers, having many realistic characteristics. Though originally proposed as a form of generative model for unsupervised learning, GANs have also proven useful for semi-supervised learning,
fully supervised learning,[3] and reinforcement learning.[4]
The core idea of a GAN is based on the "indirect" training through the discriminator, which itself is also being updated dynamically.[5] This basically means that the generator is not trained to minimize the distance to a specific image, but rather to fool the discriminator. This enables the model to learn in an unsupervised manner.
The generative network generates candidates while the discriminative network evaluates them.[1] The contest operates in terms of data distributions. Typically, the generative network learns to map from a latent space to a data distribution of interest, while the discriminative network distinguishes candidates produced by the generator from the true data distribution. The generative network's training objective is to increase the error rate of the discriminative network (i.e., "fool" the discriminator network by producing novel candidates that the discriminator thinks are not synthesized (are part of the true data distribution)).[1][6]
A known dataset serves as the initial training data for the discriminator. Training it involves presenting it with samples from the training dataset, until it achieves acceptable accuracy. The generator trains based on whether it succeeds in fooling the discriminator. Typically the generator is seeded with randomized input that is sampled from a predefined latent space (e.g. a multivariate normal distribution). Thereafter, candidates synthesized by the generator are evaluated by the discriminator. Independent backpropagation procedures are applied to both networks so that the generator produces better images, while the discriminator becomes more skilled at flagging synthetic images.[7] The generator is typically a deconvolutional neural network, and the discriminator is a convolutional neural network.
GANs often suffer from a "mode collapse" where they fail to generalize properly, missing entire modes from the input data. For example, a GAN trained on the MNIST dataset containing many samples of each digit, might nevertheless timidly omit a subset of the digits from its output. Some researchers perceive the root problem to be a weak discriminative network that fails to notice the pattern of omission, while others assign blame to a bad choice of objective function. Many solutions have been proposed.
BUY NVIDIA OFFICIAL PRODUCTS -
Comments